

HolbEx

Habitable Exoplanet Observatory

Baseline Architecture

Stefan Martin

Jet Propulsion Laboratory,

California Institute of Technology

Science Goals

Seek out nearby worlds and explore their habitability

Map out nearby planetary systems and understand their diversity

Enable new explorations of astrophysical systems in the UV to near-IR

Preferred Architecture—4H

Telescope:

4 m off-axis f/2.5 Al-coated monolith

Instruments:

- Coronagraph Instrument (HCG)
- Starshade Instrument (SSI, used with a 52 m Starshade)
- UV Spectrograph (UVS)
- HabEx Workhorse Camera (HWC)

Launch:

- SLS Block 1B (Telescope)
- Falcon Heavy (Starshade)
- L2 orbit

Timeline:

- Launch: Mid-2030s
- Nominal operation: 5 years, Capability: 10 years

Studied a total of 9 architectures: 4 m/3.2 m/2.4 m × Hybrid/Starshade-Only/Coronagraph-Only

The Next-Generation UVOIR Great Observatory

	HabEx	HST
Aperture	4.0 m unobscured	2.4 m obscured
Diffraction Limit	400 nm	500 nm
Slew Rate (180 deg)	20 min (typical), 5 min (max)	~30 min (max)
Pointing Accuracy	0.7 mas	5 mas (typical), 2 mas (best)
Spatial Resolution	25 mas	50 mas
Effective Area* (@200 nm)	10,000 cm ²	700 cm ²
Micro-shutters	Yes	No
Serviceable	Yes/Robotic	Yes/Astronaut

^{*} Effective area is clear aperture multiplied by throughput and quantum efficiency

HabEx Instruments

UV Imager & Spectrograph (UVS)

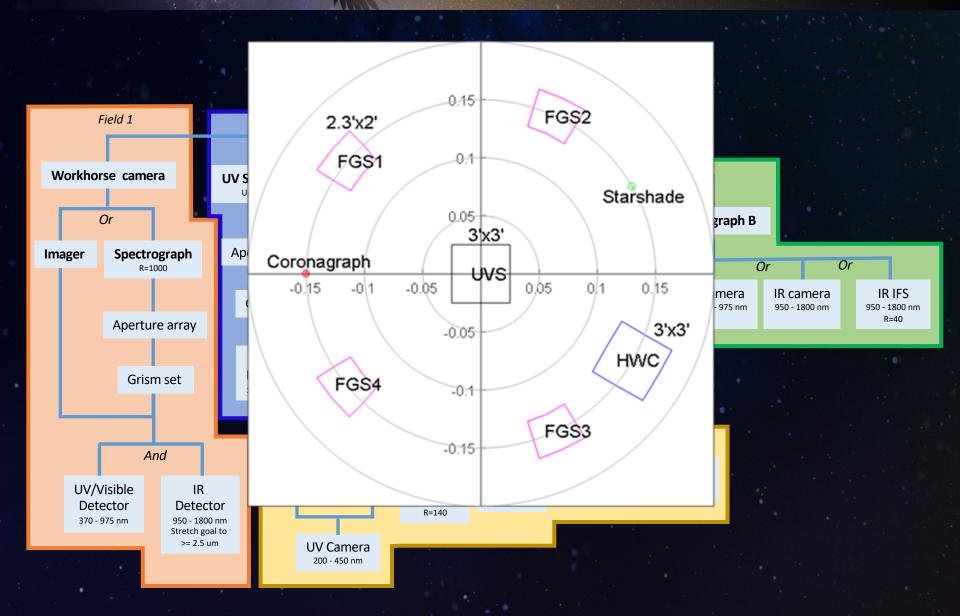
Imaging Channel	115 - 370 nm					
Spectroscopy Channel	 115 - 320 nm with R=500 to 60,000 320 - 370 nm with R=500 or 1,000 					
Field of View	 3 x 3 arcmin² Micro-shutter Array for MOS: 2 x 2 array of 171 x 365 apertures 					
Effective Collecting Area	10x HST/COS					

Coronagraph (HCG)

Baseline	Vector Vortex (Charge 6)
Visible Channels (1 per Polarization)	450 - 975 nm Imager + IFS with R=140
Near Infrared Channel	975 - 1800 nm Imager + IFS with R=40
High Contrast Region	IWA = 2.4 I/D (62 mas at 0.5 mm) OWA = 32 I/D (830 mas at 0.5 mm)
Raw Contrast	2.5 x 10 ⁻¹⁰ at IWA over 20% Bandwidth 40x better than WFIRST CGI
Features	Active Low Order Wavefront Sensing & Control with two 64x64 DMs

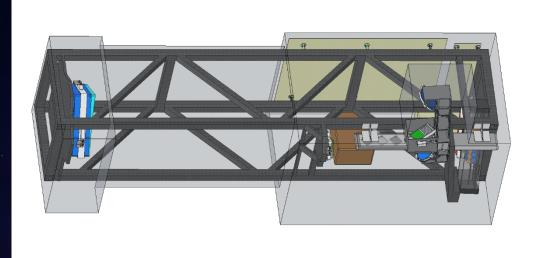
Starshade Instrument (SSI)

UV Channel	200 to 450 nm Imager + Grism at R=7
Visible Channel	450 - 975 nm Imager + IFS with R=140
Near Infrared Channel	975 - 1800 nm Imager + IFS with R=40
High Contrast Region	IWA = 58 mas (from 300 to 1000 nm) OWA = 6" (Imager) / 1" (IFS)
Raw Contrast	10 ⁻¹⁰ at IWA over 107% Bandwidth (nominally 300 to 1000 nm)


Workhorse Camera & Spectrograph (HWC)

	vvoikhorse Gamera & Spectrograph (HVVG)							
Ok	Visible Channel	370 - 975 nm Imager + Grism with R=1000 >2x better resolution than HST < 600 nm						
	Near Infrared Channel	975 - 1800 nm Imager + Grism with R=1000						
	Field of View	 3 x 3 arcmin² Micro-shutter Array for MOS: 2 x 2 array of 171 x 365 apertures 						

Instrument Complement



Ultraviolet Spectrograph and Camera

- UVS instrument for high-resolution spectroscopy down to 115 nm in the UV.
- Accesses a large number of diagnostic emission and absorption lines available at wavelengths shorter than 0.3 µm.
- Set of 20 diffraction gratings + 1 mirror for imaging, + specialized filters.

Resolution R	λ min	λ max	Δλ	Resolution R	λ min λ max		Δλ	
λ/Δλ	μm	μm	pm	λ/Δλ	μm	μm	pm	
60,000	0.115	0.127	2.01	25,000	0.115	0.146	5.41	
60,000	0.127	0.139	2.21	25,000	0.146	0.186	6.88	
60,000	0.139	0.153	2.44	25,000	0.186	0.236	8.74	
60,000	0.153	0.169	2.68	25,000	0.236	0.300	11.11	
60,000	0.169	0.186	2.95	12,000	0.115	0.186	12.29	
60,000	0.186	0.204	3.25	12,000	0.186	0.300	19.86	
60,000	0.204	0.225	3.58	6,000	0.115	0.300	32.15	
60,000	0.225	0.248	3.94	3,000	0.120	0.300	64.29	
60,000	0.248	0.273	4.33	1,000	0.120	0.300	185.00	
60,000	0.273	0.300	4.77	500	0.120	0.300	185.00	

HabEx Workhorse Camera

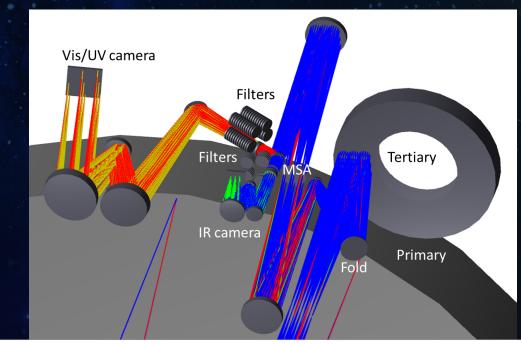
Spectral Range (TBR): 150-1800 nm

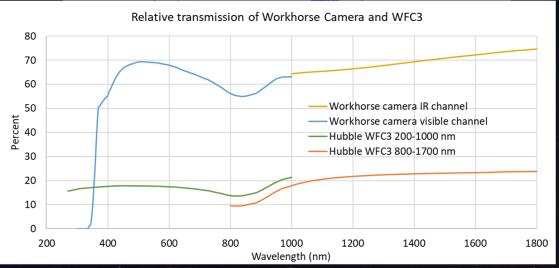
- Diffraction limited above 600 nm
- Visible 370 950 nm
- IR 900 1800 nm, stretch 2500 nm

Spectral Resolution

 Moderate resolution spectroscopy, R~1000

Focal planes:

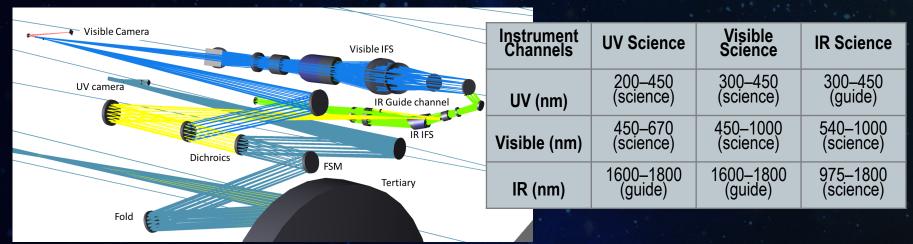

- e2v CCD203 3x3 12288 total 12 μm pixels
- Teledyne H4RG10 2x2 8192 total 10 μm pixels

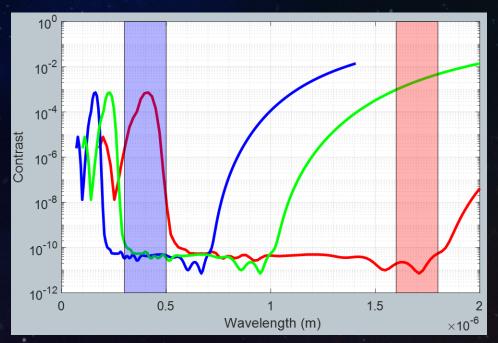

Aperture Array:

- GSFC JWST 2x2 180x80 μm * 171x365 apertures
- Will fold out for camera operation

Filters/grisms:

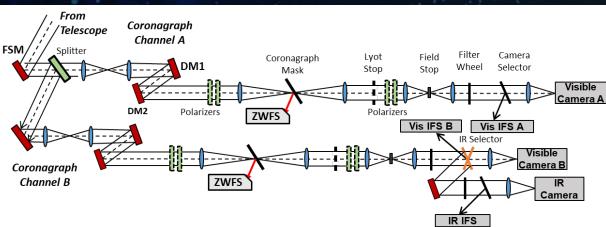
- Up to 48 filters and grisms in the Visible channel.
- Up to 16 filters/grisms in the IR channel.



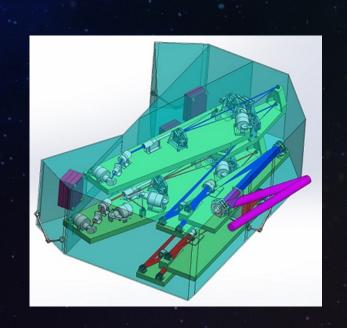


Starshade Instrument

- Starshade diameter: 52 m
- Telescope range: 42,600 km to 114,100 km
- Inner Working Angles: 47, 70, 126 mas
- Formation flying requirement: stay within 1m radius of line of sight to the star
- S5 study (Michael Bottom and Thibault Flinois) has obtained ExEP TAC agreement that Formation Flying is at TRL 5.

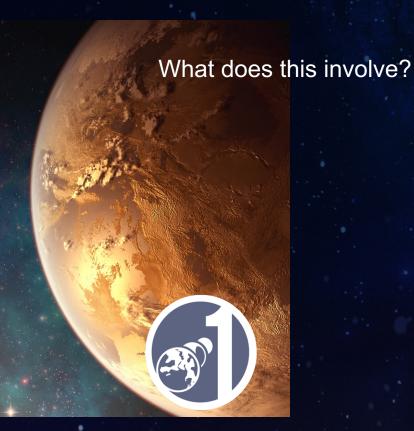


Dual Coronagraphs



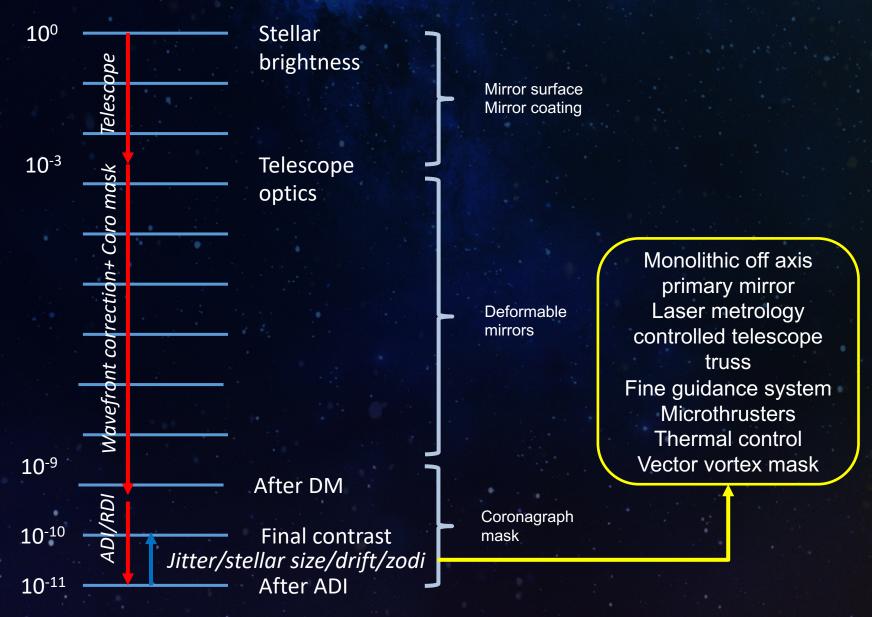
Twin coronagraphs observe the same field in orthogonal polarizations.

Within the two channels (A&B) dichroic filters set the optical bandwidth to 20%

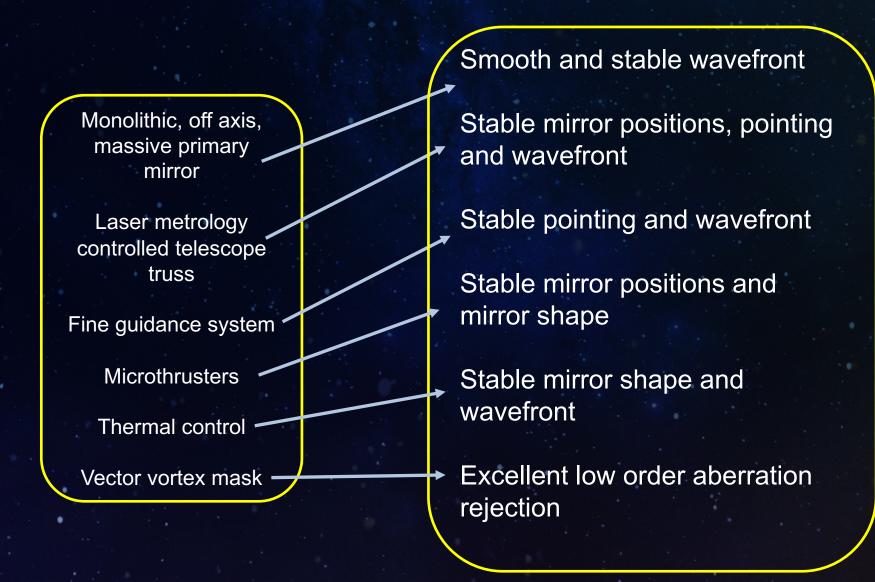

Camera channels									
	Visible Channel (A&B)	IR Channel (B)							
FOV	1.5" – 2.7"	3.1"							
Wavelength bands	0.45–0.55 µm	0.95–1.8 μm							
	0.55–0.67 µm	·							
	0.67–0.82 µm								
	0.82–1.00 µm								
Pixel resolution	11.6 mas – 17.3 mas	29.9 mas							
Telescope resolution	23 mas (at 0.45 µm)	49 mas (at 0.95 μm)							
	42 mas (at 0.82 µm)	т (т стого рин)							
IWA (2.4 λ/D)	56 mas (at 0.45 µm)	118 mas (at 0.95 μm)							
	102 mas (at 0.82 μm)	` '							
OWA (as)	0.74 -1.11 1.57								
Detector	1×1 CCD201	1×1 LMAPD							
Array width	1024 256×320								
	Spectrograph channels								
	Visible Channel (A&B)	IR Channel (B)							
FOV	1.5" – 2.7" 3.1"								
Spectrometer resolution	140 40								
Spectrometer type	IFS	IFS							
Detector	1/4 CCD282 (EMCCD)	2×2 LMAPD*							
Array width (pixels)	2048	2048							
	Other								
Deformable mirror	2 mirrors								
	64×64 elements								
	0.4 mm pitch								
Polarization	Vertical (A channel) Horizontal (primarily)								
	Horizontal (B channel) Vertical (possible)								
	(B onarmor)	, oca. (poddibio)							

Science Goal #1

Seek out nearby worlds and explore their habitability



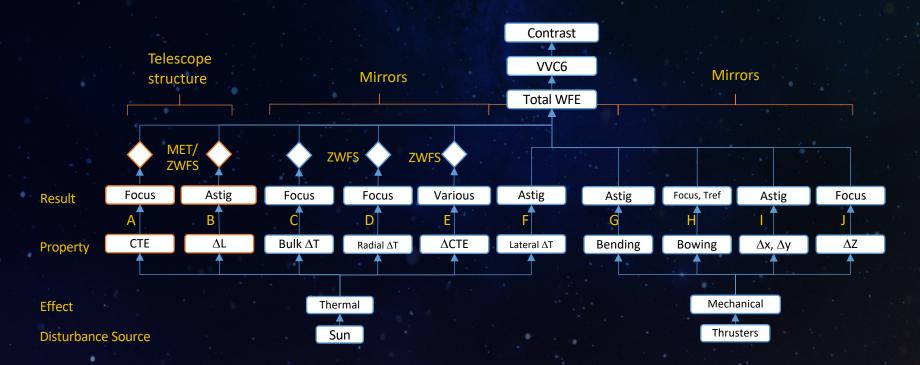
Stellar brightness


Planet contrast

Base contrast

Starlight Suppression using a Coronagraph

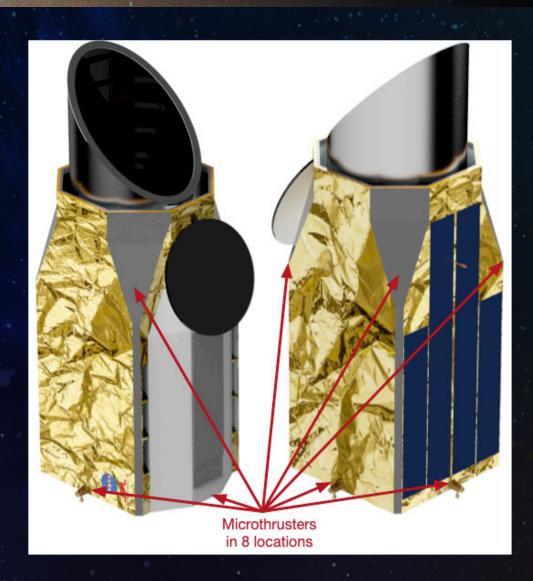
Starlight Suppression using a Coronagraph


Designing for a Coronagraph

Coronagraph requires: Excellent wavefront quality and wavefront stability

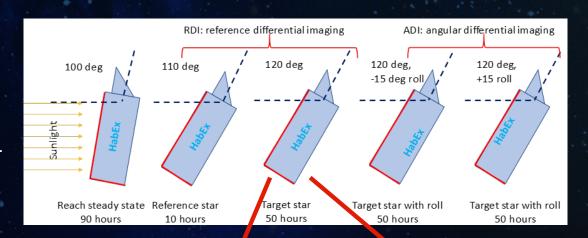
Place system in a thermally and gravitationally benign Earth-Sun L2 orbit

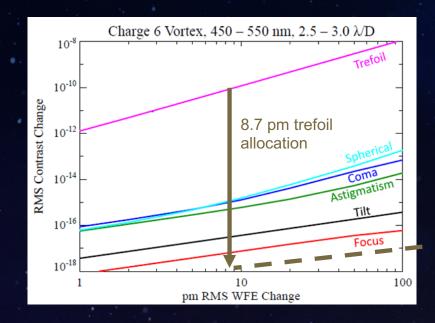
And take account of at least these effects:

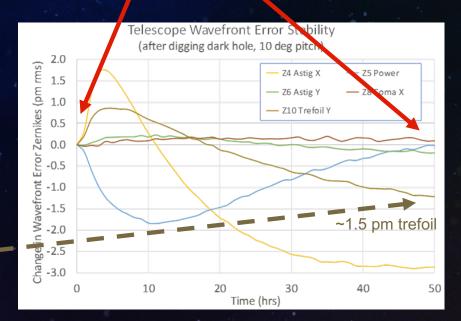

Telescope Spacecraft

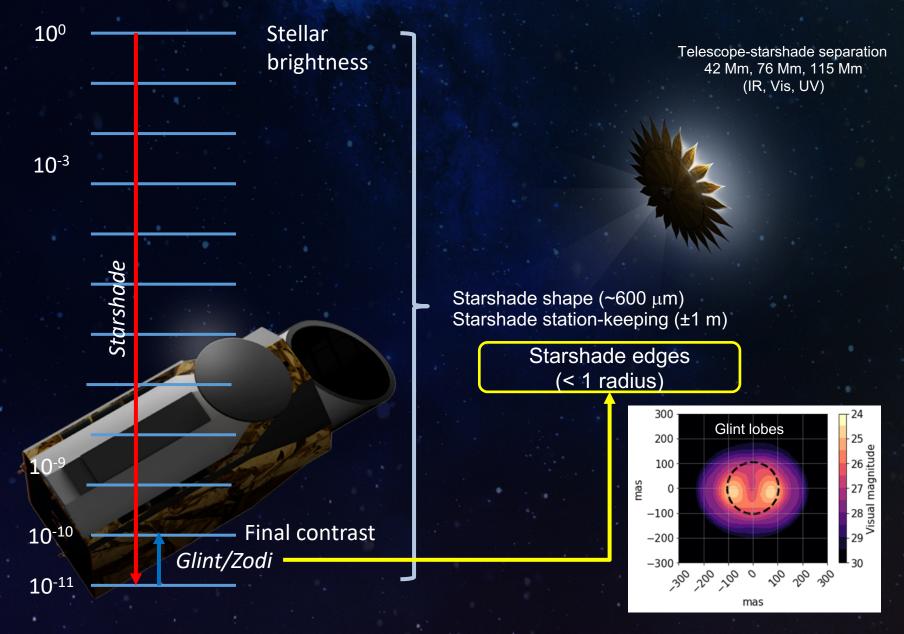
- Earth-Sun L2
 - Thermal stability
- Conventional thrusters for slewing
- Micro-Thrusters for fine pointing control
 - Dynamical disturbances orders of mag lower than reaction wheels
- Telescope barrel and secondary mirror tower isolated from the sunshade
- Monolithic primary mirror held stable at ~1 mK level within a thermal 'bath'

colloidal micro-thrusters on LISA Pathfinder

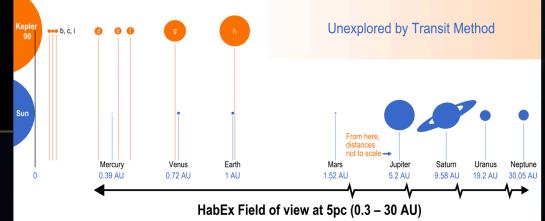





Operating the Coronagraph


- RDI: telescope at L2 with a 100° sun angle
- Thermally equilibrate, then
 - Pitch to a reference star at an angle of 110°, hold for 10 hrs.
 - Dig dark hole on a reference star.
 - Pitch +10° to target star and hold for 50 hrs.

Starlight Suppression using a Starshade


Exoplanet instruments: FOV

Starshade has high contrast and a large field of view, with OWA only limited by the detector format.

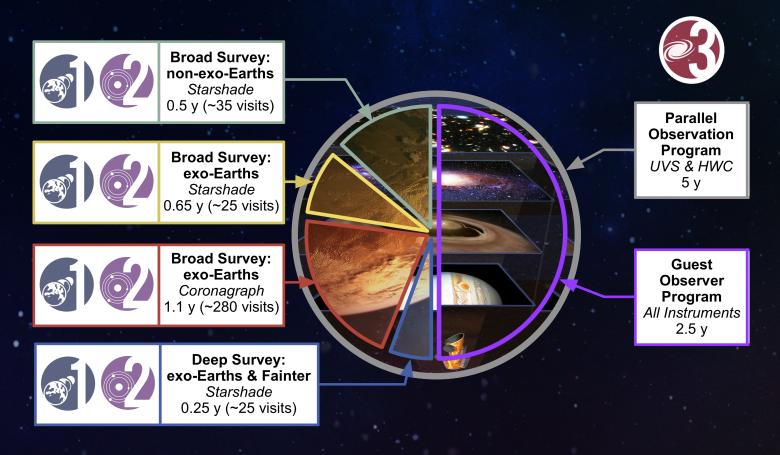
Starshade can cover a large range of physical separations in the nearest (most favorable) systems.

- Study planetary architecture diversity
- · Assess "architecture habitability"
- Study variation of atmospheric properties

The Great Observatory for the 2030s & Beyond

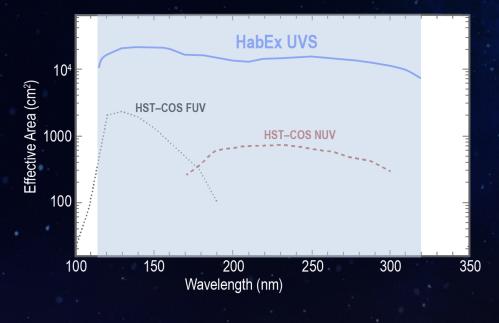
- HabEx will be a true successor to Hubble with:
 - A much larger effective collecting area in the UV,
 - State of the art instrumentation and detectors,
 - Better resolution than existing or planned facilities including HST, JWST, and WFIRST for wavelengths <1 micron.
- Directly detecting and characterizing Earth-like exoplanets orbiting sunlike stars in reflected visible light requires an ultra-stable space telescope.
- HabEx will be a technically superior observatory in every way, with
 - Extreme thermal stability ~1 mK
 - Extreme pointing stability ~0.7 mas
 - Extreme wavefront stability ~ 2 pm rms (over 50 hours)
 - Extreme maneuverability ~ 40°/minute slew rate

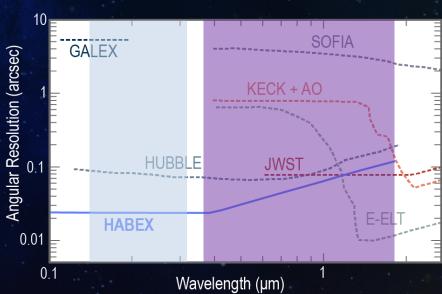
Backup slides



Notional Time Allocation for a 5-Year Mission

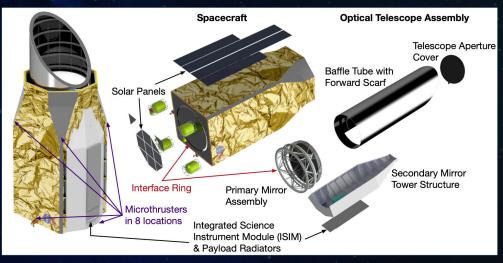
- Time is evenly split between exoplanet and observatory science
- Exoplanet broad-survey uses both the coronagraph (for multi-epoch imaging) and the starshade (for spectroscopy)
- The deep survey only uses the starshade for imaging and spectroscopy




Exceptional Resolution and Effective Area

HabEx Workhorse Camera (HWC)

Telescope Accommodations


High Mechanical Stability

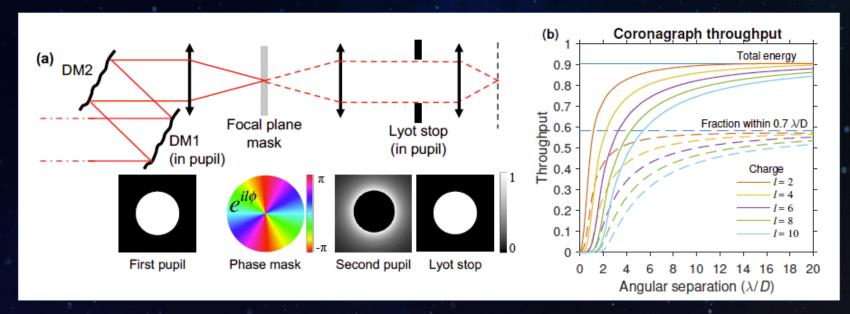
- Low Level of Disturbances (μ-thrusters)
- Stiff Opto-Mechanical Structure
- Ultra-low pointing jitter(<0.7 mas rms pre-correction)
- Monolithic primary
 - No segment dynamic phasing issues

High Thermal Stability

- Active Thermal control
- Zerodur PM / SM (< 5 ppb/K CTE)</p>
- Large Thermal Inertia (1400 kg PM)
- Laser Metrology to rigidify M1-M2-M3

Section 6.2

Daniel Inouye Telescope 4.2m Off Axis Primary Mirror (cast from Zerodur by Schott)

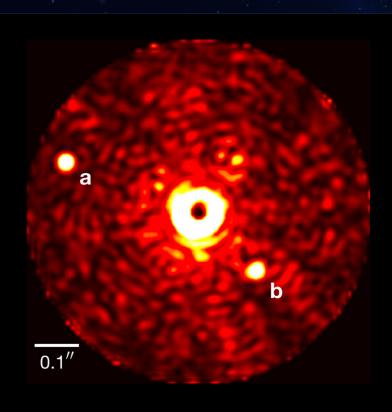


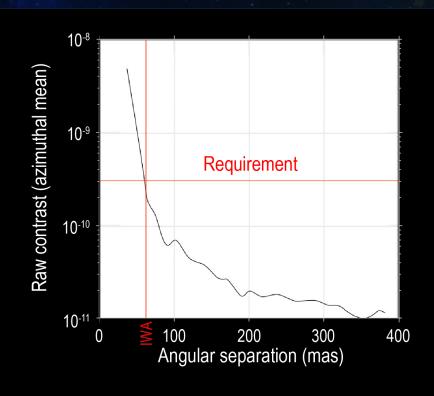
Coronagraph Accommodations and Trades

Vector Vortex Charge 6 (VVC6) Coronagraph selected as best balance between:

- Science performance (IWA, throughput, overall planet yield)
- Resilience to low order aberrations (polarization cross-talk, thermal drift)

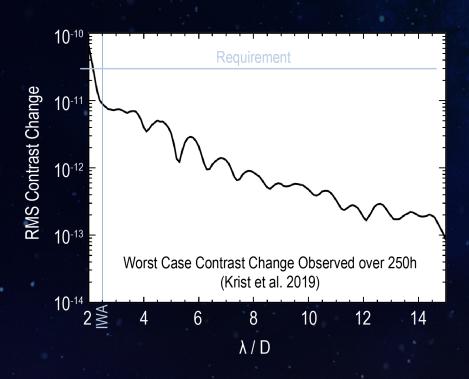
VVC6 → Telescope wavefront stability requirements can be relaxed and met


Dimitri Mawet's presentation on the State-of-the-art of Coronagraphy



Verifying the Telescope - Coronagraph System: Static Modeling (J. Krist 2019)

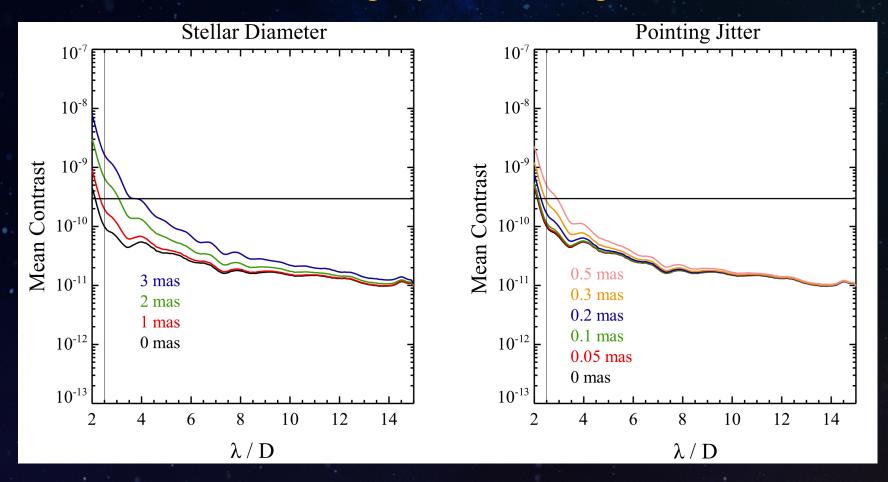
End-to-end dual polarization numerical modeling developed for previous mission concept studies & technology demonstrations, lab-validated on WFIRST-CGI



Verifying the Telescope - Coronagraph System: Dynamic Modeling Results

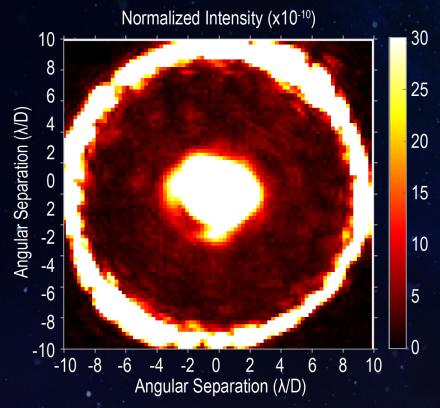
Predicted Wavefront Error Stability meets contrast stability requirements

Section 6.9, Figure 6.9-24

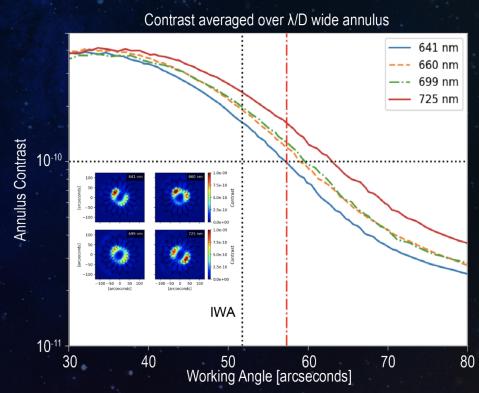

Coronagraph Modeling includes:

- Realistic static wavefront errors WFE (A, φ)
- WFE drifts predicted from STOP analysis
- Finite diffraction propagation effects
- Polarization-induced aberrations
- Finite star diameter and pointing errors
- VVC 6 sensitivity to WFE

HabEx Coronagraph Modeling Results



Coronagraph and Starshade Laboratory Already Approach Requirements


10% bandwidth dark holes reach 4×10⁻¹⁰ mean contrast with *HabEx-like unobscured monolithic aperture* and classical Lyot Coronagraph

Decadal Survey Testbed (DST) Results: Seo, B. et al. 2019

Dimitri Mawet's presentation on the State-of-the-art of Coronagraphy

Starshade testbed reaches better than 3x10⁻¹⁰ broad-band contrast at IWA, at a flight-like Fresnel #

Anthony Harness et al. 2019, Princeton Lab Starshade Testbed Results https://exoplanets.nasa.gov/exep/technology/starshade/)

Kendra Short's presentation on Technology Readiness for Starshades

Architectures vs Science, Cost and Technical Maturity

Ī		Н	abEx Science	nce HabEx Mission Architectures								
		Goa	ils & Objectives	4H	4C	4 S	3.2H	3.2C	3.2S	2.4H	2.4C	2.48
		01	Exo-Earth candidates around nearby sunlike stars?									
	ets	02	Water vapor in rocky exoplanet atmospheres?									
	Habitable Exoplanets	О3	Biosignatures in rocky exoplanet atmosphere?									
	Ha	04	Surface liquid water on rocky exoplanets?									
		O 5	Architectures of nearby planetary systems?									
	stary ns	O6	Exoplanet atmospheric variations in nearby systems?									
	Exoplanetary Systems	07	Water transport mechanisms in nearby planetary systems?									
	Exor Sy	08	Debris disk architectures in nearby planetary systems?									
	2 {}	О9	Lifecycle of baryons?									
		O 10	Sources of reionization?									
	4	011	Origins of the elements?									
٠	Observatory Science	012	Discrepancies in measurements of the cosmic expansion rate?									
1	y Sci	013	The nature of dark matter?									
	/ator	014	Formation and evolution of globular clusters?									
	Serv	015	Habitable conditions on rocky planets around M-dwarfs?									
	ö	016	Mechanisms responsible for transition disk architectures?									
		017	Physics driving star-planet interactions, <i>e.g.</i> auroral activity?									
	Est	imat	ed Cost (\$B FY20)	6.8	4.8	5.7	5.7	3.7	5.0	4.8	3.1	4.0
:		Νι	umber of TRL4	13	10	9	12	9	9	11	8	8
			orths Characterized onet Detections (all)	8 178	5 114	5 140	5 105	3 83	4 119	3 76	1 27	2 67

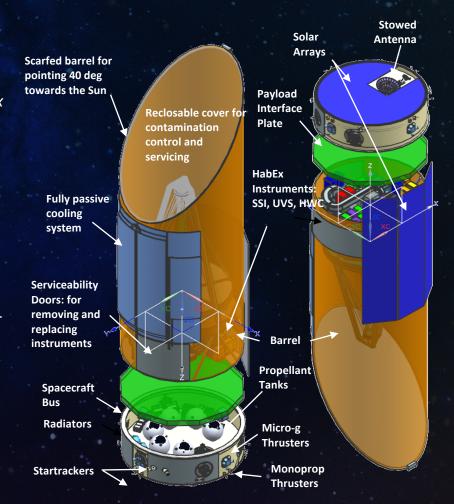
- STDT's preferred architecture is 4H
- Red does not mean "no science"
- At a given size, Hybrid architectures maximize exoplanet science
- C-only
 - no UV exoplanet observations
 - Vast majority of planets with orbits
 - Reduced spectroscopy
- S-only:
 - High Quality spectra
 - Limited # of orbits measured

 Observatory Science is primarily a function of telescope size

 Architectures 4H (4C) and 3.2S studied in detail and "TRACEable"

Starshade-Only 3.2S Architecture

No coronagraph


- -Telescope WFE stability tolerances relaxed 1000 times
- Starshade provides the highest quality exoplanet spectroscopy
- -But lower yield of exo-Earths unless detected before HabEx

Active Optics On-axis Telescope

- -Corrects Static PM WFE in orbit
- Segmented to stay within current practice and largest ULE mirrors
- -Laser MET to continuously maintain optical alignment
- -Lighter (2T) & Smaller Telescope
 - Light weight ULE (5cm thick) Primary Mirror
 - Total launch Mass = 7.3 T, fits in Delta IV Heavy or Vulcan Centaur
 - More compact (f/1.3)
 - Non deployable OTA a priori scalable to 4m and above

Lower cost option

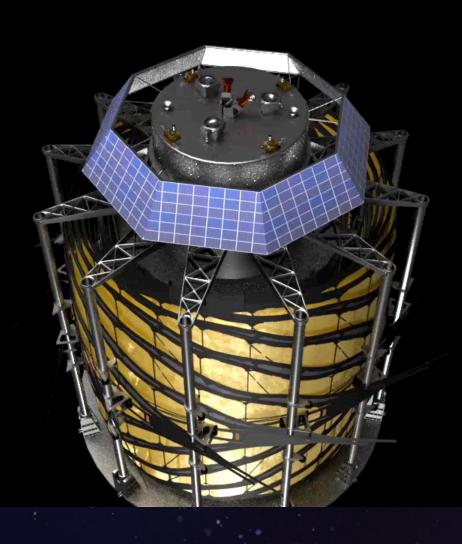
Estimated Cost Reductions	HabEx 4H	HabEx 3.2S
Smaller Telescope	_	-0.6 \$B
No Coronagraph	_	-0.4 \$B
Smaller Launch Vehicle	_	-0.4 \$B
Same Starshade System		_
Lower Reserves	_	-0.4 \$B
Total Estimated Cost	6.8 \$B	5.0 \$B

Appendix B

Take-Aways on HabEx Architecture

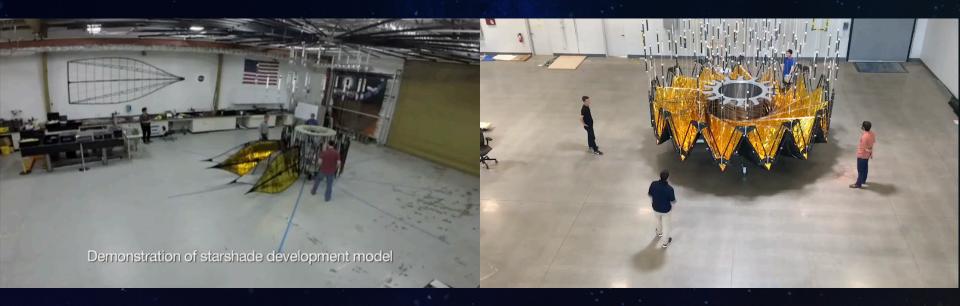
1. Conservative

2. Achievable


3. Balanced

4. Flexible

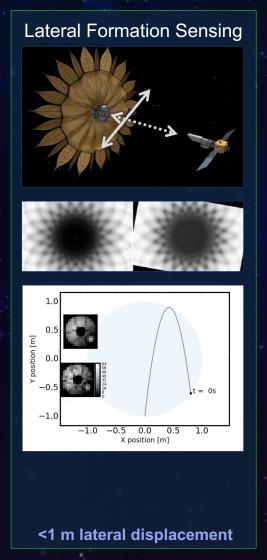
Starshade Deployment

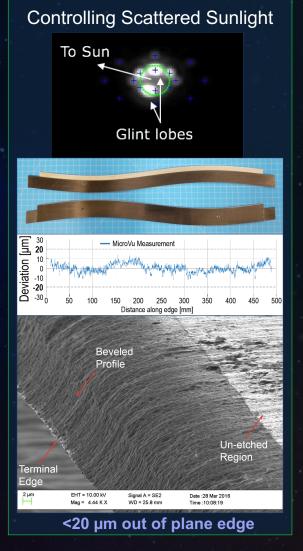


Truss Deployment Test

½ scale truss for HabEx

½ scale for HabEx

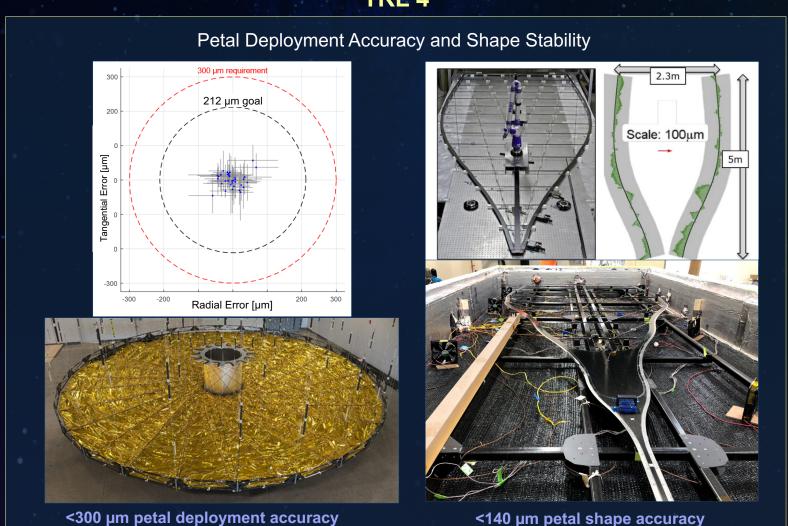

Starshade Technology Advances


TRL 5 March 2020

Starlight Suppression 1e-9 100 7.5e-10 50 5.0e-10 -502.5e-10 -100100 7.5e-10 50 5.0e-10 -2.5e-10 -10050 -100 - 500 50 100 [arcseconds] 1 × 10⁻¹⁰ Contrast over 10% bandwidth

TRL 5

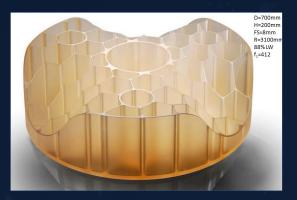
TRL 5



Starshade Technology Advances

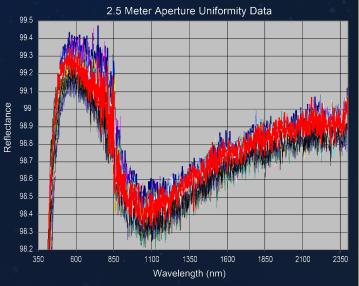
TRL 4

Telescope Technology Advances



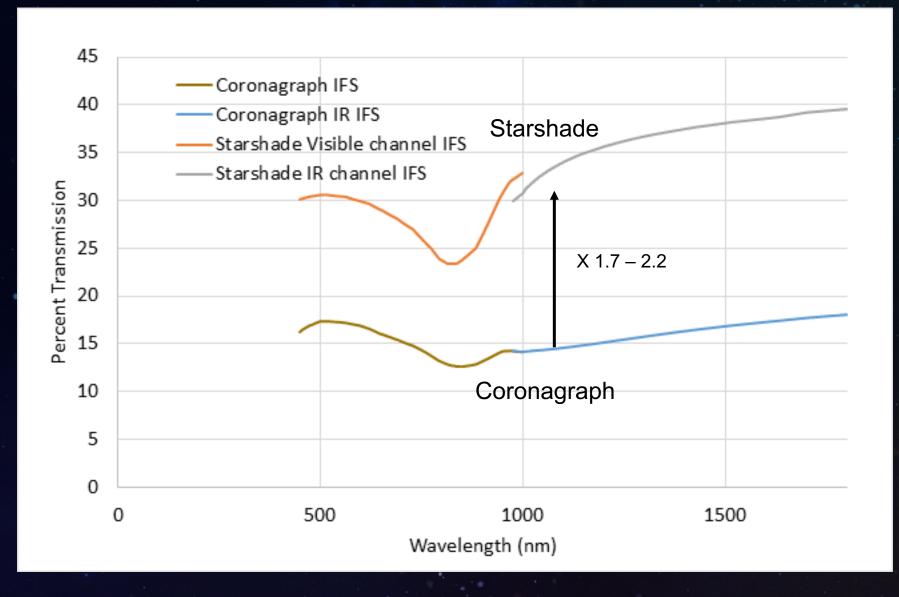
TRL 4

Large Monolith Mirror Fabrication



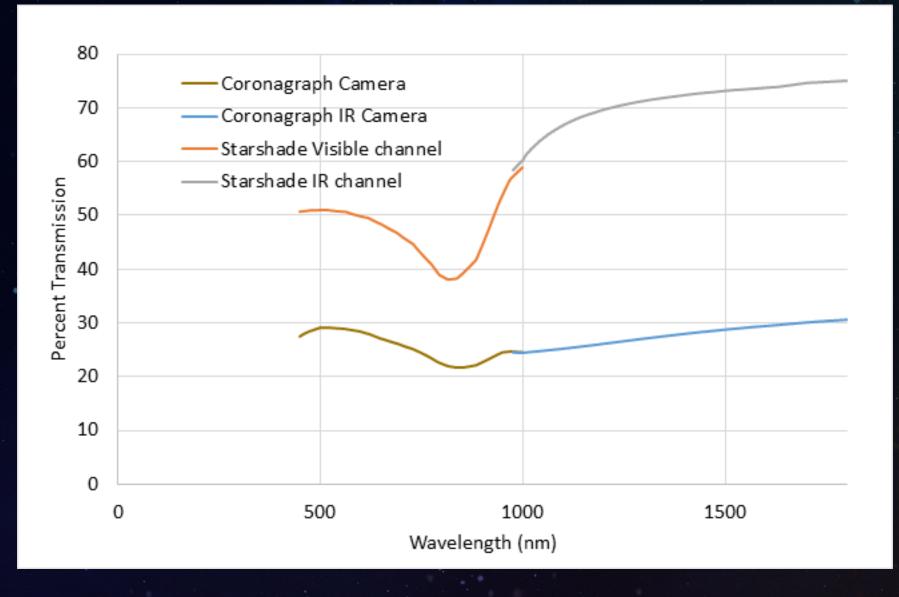
Surface figure error (rms): <19 nm; 5 nm (1–100 mm period), 0.1 nm surface roughness CTE ±3 ppb/K

2 mm thick machined ribs



~0.5% Reflectance variation 2.5 m "diameter", 34 samples protected silver

Transmission Curves Coronagraph and Starshade IFS



Transmission Curves Coronagraph and Starshade Cameras

